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ABSTRACT

Fusing complementary information from different modalities can lead to the discovery of more
accurate diagnostic biomarkers for psychiatric disorders. However, biomarker discovery through
data fusion is challenging since it requires extracting interpretable and reproducible patterns from
data sets, consisting of shared/unshared patterns and of different orders. For example, multi-channel
electroencephalography (EEG) signals from multiple subjects can be represented as a third-order
tensor with modes: subject, time, and channel, while functional magnetic resonance imaging (fMRI)
data may be in the form of subject by voxel matrices. Traditional data fusion methods rearrange
higher-order tensors, such as EEG, as matrices to use matrix factorization-based approaches. In
contrast, fusion methods based on coupled matrix and tensor factorizations (CMTF) exploit the
potential multi-way structure of higher-order tensors. The CMTF approach has been shown to capture
underlying patterns more accurately without imposing strong constraints on the latent neural patterns,
i.e., biomarkers. In this paper, EEG, fMRI and structural MRI (sMRI) data collected during an
auditory oddball task (AOD) from a group of subjects consisting of patients with schizophrenia
and healthy controls, are arranged as matrices and higher-order tensors coupled along the subject
mode, and jointly analyzed using structure-revealing CMTF methods (also known as advanced CMTF
(ACMTF)) focusing on unique identification of underlying patterns in the presence of shared/unshared
patterns. We demonstrate that joint analysis of the EEG tensor and fMRI matrix using ACMTF reveals
significant and biologically meaningful components in terms of differentiating between patients with
schizophrenia and healthy controls while also providing spatial patterns with high resolution and
improving the clustering performance compared to the analysis of only the EEG tensor. We also
show that these patterns are reproducible, and study reproducibility for different model parameters.
In comparison to the joint independent component analysis (jICA) data fusion approach, ACMTF
provides easier interpretation of EEG data by revealing a single summary map of the topography
for each component. Furthermore, fusion of SsMRI data with EEG and fMRI through an ACMTF
model provides structural patterns; however, we also show that when fusing data sets from multiple
modalities, hence of very different nature, preprocessing plays a crucial role.

Keywords EEG - fMRI - sMRI - schizophrenia - structural/functional biomarkers - coupled matrix/tensor factorization -
ICA
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1 Introduction

Multiple neuroimaging techniques provide complementary views of neural structure and function. For instance, one of
the most commonly used neuroimaging methods, electroencephalography (EEG), measures the electrical activity with
high temporal but low spatial resolution, while functional magnetic resonance imaging (fMRI) records the changes in
the blood flow with high spatial but low temporal resolution [1, 2]. Therefore, joint analysis of signals from multiple
neuroimaging modalities is of interest in order to better understand neural activity and to discover reliable diagnostic
biomarkers for psychiatric disorders such as schizophrenia [3, 4, 5, 6, 7].

With the advances in technology, vast amounts of neuroimaging data has been generated; however, data mining or signal
processing methods so far have limited success in terms of finding reliable diagnostic imaging biomarkers for many
psychiatric disorders [4, 8]. One of the reasons for this limited success has been the fact that data fusion is a particularly
challenging task when the goal is to extract reproducible and interpretable patterns. Data from different sources consists
of both shared (or common) and unshared (or distinct) underlying patterns [9, 3, 10, 2], and even the definition of
“sharedness" is a topic of current research [11, 12]. Furthermore, data sets from different modalities may be of different
orders, such as multi-channel EEG signals from multiple subjects can be represented in the form of a third-order tensor
with modes: subject, time, and channel, while fMRI data is often represented as a subject by voxel matrix (Figure 1).
Similar challenges have been observed in other disciplines targeting biomarker discovery as well, e.g., in joint analysis
of omics data [13], where the ultimate goal is to discover significant metabolites, genes, etc. as potential biomarkers.
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Figure 1: A third-order tensor representing multi-channel EEG signals is coupled with fMRI and sMRI data in the form
of matrices in the subject mode.

The common approaches for fusion of multi-modal neuroimaging data are based on matrix factorizations, such as joint
independent component analysis jJICA) [14], parallel ICA [15] and independent vector analysis (IVA)-based techniques
[16], where signals from multiple modalities are represented as matrices, e.g., fMRI data in the form of a subject by
voxel matrix, and EEG signals as a subject by time matrix [16]. Matrix factorization-based fusion methods require
additional constraints to recover patterns uniquely [9, 10, 17, 16] and a common practice in neuroscience is to assume
that extracted patterns (i.e., biomarkers, or spatial/temporal patterns) are statistically independent. Drawbacks of the
traditional methods are two-fold: (i) in the presence of multi-channel EEG signals, which can naturally be represented
as a third-order tensor, data is either matricized in the form of a subject by time-channel matrix [18] or only the signal
from a single channel is analyzed [16], ignoring the potential multilinear structure of multi-channel EEG signals, (ii)
statistical independence might be a too strong constraint to impose on the patterns; therefore, methods may fail to
capture the true patterns [13].

In contrast, coupled matrix and tensor factorizations (CMTF), introduced more recently, have proven useful in terms of
addressing the drawbacks of matrix factorization-based fusion methods by jointly analyzing data sets in the form of
matrices and higher-order tensors without imposing constraints on the factors when the higher-order tensors have a
defined multilinear structure [13]. CMTF-based approaches factorize higher-order tensors using a tensor factorization
model while simultaneously factorizing the data sets in the form of matrices, and enable the exploration of the potential
multilinear structure inherent to, for instance, multi-channel EEG signals. Previously, analyzing multi-channel EEG
signals using tensor factorizations has shown promising performance in terms of capturing spatial, spectral and temporal
signatures of epileptic seizures [19, 20] as well as providing better understanding of brain activity patterns [21, 22, 23],
see also [24] for a review. Therefore, recent studies analyzing neuroimaging signals from multiple modalities have
arranged multi-channel EEG signals as higher-order tensors and used CMTF-type methods to jointly analyze, e.g., EEG
and magnetoencephalography [25, 26], EEG and electro-ocular artifacts [27], and EEG and fMRI [28, 29, 30, 31], or
arranged multiple diffusion tensor imaging modalities as a third-order tensor and coupled that with gray matter maps
[32]. However, among the CMTF-based methods, the ones assuming that coupled data sets have only shared factors,
may fail to capture the underlying patterns in the presence of both shared and unshared factors [33, 34]; therefore, they
are not ideal for biomarker discovery.


http://dx.doi.org/10.1101/543603

bioRxiv preprint first posted online Feb. 8, 2019; doi: http://dx.doi.org/10.1101/543603. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

In this paper, we use a CMTF-based approach to jointly analyze neuroimaging signals from multiple modalities, more
specifically, fMRI, sMRI and EEG data, collected during an auditory oddball (AOD) task from a group of subjects
consisting of patients with schizophrenia and healthy controls with the goal of unraveling potential diagnostic biomarkers
for schizophrenia. To the best of our knowledge, this is the first comprehensive study of a CMTF-based method for
biomarker discovery for a psychiatric disorder discussing both strengths and limitations of the proposed framework,
building onto our preliminary results in [35, 36]. Furthermore, due to the reproducibility and uniqueness requirements
of such an application, we use a structure-revealing CMTF model, known as the advanced CMTF (ACMTF) model
[33], to estimate weights of the components in each modality in order to identify shared/unshared factors and quantify
the contribution from each modality. Our preliminary studies have shown the promise of the ACMTF model in
terms of capturing neural patterns that can differentiate between patients with schizophrenia and healthy controls by
jointly analyzing EEG-fMRI signals [36] and EEG-fMRI-sMRI data [35]; however, those two studies used only a
subset of electrodes, making it difficult to evaluate the added value of each modality in terms of biomarker discovery.
Also, in this paper, we include an additional metric to study the additive value of each modality, and evaluate the
performance of the models in terms of clustering subjects from different groups, whereas the previous studies only used
the interpretation and statistical significance of extracted patterns in terms of differentiating between groups. Clustering
results complement univariate statistical significance tests and show whether combinations of potential biomarkers
provide meaningful clusters. We show that EEG analysis using a CP model and joint analysis of EEG, fMRI as well as
EEG, fMRI and sMRI reveal statistically significant and biologically meaningful components in terms of differentiating
between patients with schizophrenia and healthy controls. In comparison to the results when only the EEG data is
analyzed, the incorporation of fMRI signals results in clearer spatial maps and better clustering performance. With the
incorporation of sMRI, we obtain structural patterns in addition to temporal and spatial patterns of functional activity
without degrading the clustering performance. ACMTF models with different parameter settings have been compared,
and based on detailed experiments, we observe that ACMTF consistently reveals similar significant patterns, which
provide a concise summary of the topography, while being sensitive to certain parameters for uniqueness.

2 Materials and Methods

2.1 Background

In this section, we briefly discuss the CP tensor model as well as structure-revealing CMTF and jICA models. Let the
third-order tensor X € R*/*K with modes subject, time, and electrode, and matrices Y € R'*M (subject by voxel)
and Z € RY*L (subject by voxel), represent multi-channel EEG, fMRI and sMRI data, respectively (as in Figure 1).

2.1.1 CANDECOMP/PARAFAC (CP)

The CP model [37, 38], also referred to as the canonical polyadic decomposition [39], is one of the most popular
tensor factorization models. It is considered as one of the extensions of the matrix singular value decomposition
(SVD) to higher-order tensors (/N > 3) and represents the tensor as a sum of rank-one tensors. For a third-order tensor
X € RIXIXK the R-component CP model is defined as

R
X~X=[\AB,C]=)> Ma,ob,oc,
r=1

where o indicates the vector outer product. The vectors from the rank-one components are collected in the factor
matrices A € RI*E = [a; ...ag],B € R’”*F = [by ...bg] and C € REXF = [, ...cR]. In this definition, columns
of all factor matrices are assumed to be normalized to unit 2-norm and the norms are absorbed in the vector A € RF*1,
For the third-order tensor X consisting of the EEG data, the factor matrices A, B and C correspond to the extracted
factor vectors in the subject, time and electrode modes, respectively. By modeling X using a CP model, we assume that
component  models a brain activity with temporal and spatial patterns represented by b,. and c,.. Multi-channel EEG
signals from each subject are a linear mixture of these R brain activities mixed using subject-specific weights. The CP
model is also known as a topographic components model [21].

In contrast to matrix factorizations, the CP model of higher order tensors is unique up to scaling and permutation under
mild conditions [40, 41], without the need to impose additional constraints.

2.1.2 Structure-Revealing Coupled Matrix and Tensor Factorizations

Given the third-order tensor X coupled with matrices Y and Z in the subject mode we can jointly factorize them using
a structure-revealing CMTF model (a.k.a. ACMTF) [33] that fits a CP model to tensor X and factorizes matrices Y and
Z in such a way that the factor matrix extracted from the common mode, i.e., subject, is the same in the factorizations
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of all data sets. An R-component ACMTF model minimizes the following objective function:

f\,T,A,B,C,D,E) = | X - [X\A,B,C]|*+|Y-AZD' |*+ | Z - ATE" |

M

+ B+ Bl + 81y
where the columns of factor matrices have unit norm, i.e., [|a, || = ||b,||=|c || =||d | = | er |]L: 1 forr =
1,...,R. X\ 0,7 € R are the weights of rank-one terms in X, Y, and Z, respectively. X, T’ € RE*® are diagonal

matrices with entries of o and ~ on the diagonal. D € RM*%® and E € RL*F correspond to factor matrices in the
voxel mode in fMRI and sMRL. || . || denotes the Frobenius norm for matrices/higher-order tensors, and the 2-norm for

vectors. ||.||; denotes the 1-norm of a vector, i.e., || x|, = Zle || and S > 0 is a penalty parameter. Imposing
penalties on the weights in (1) sparsifies the weights so that unshared factors have weights close to 0 in some data
sets. The model is illustrated in Figure 2. By jointly analyzing neuroimaging data using an ACMTF model, we assume
that each component extracted from X models a brain activity with certain temporal (b,.) and spatial (c,-) signatures,
and the corresponding component in Y models related brain activity with higher spatial resolution using d,- while the
component in Z provides information about the tissue type at a very high spatial resolution using e,.. Since the same
factor matrix A is extracted from the subject mode from all data sets, subject-specific coefficients in all modalities are
assumed to be the same. The ACMTF model inherits uniqueness from CP [42], as long as all factors are shared, and
provides reproducible and interpretable factors. Note that, in the presence of both shared/unshared components, 1-norm
penalties on the weights help to obtain unique solutions [33].
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Figure 2: Modeling of tensor X coupled with matrices Y and Z in the subject mode using a structure-revealing CMTF
model.

subjects

2.1.3 Joint ICA

An alternative approach to jointly analyze X, Y and Z is to use a matrix factorization-based fusion approach by
matricizing X in the subject mode as a subject by time - electrode matrix denoted as X ;). Joint ICA [14] concatenates
matrices representing the data from different modalities and models the constructed matrix using an ICA model as
follows:

X@1) Y Z] = AS 2)
where, for an R-component ICA model, A € R!*% corresponds to the mixing matrix, similar to the factor matrix
in (1), and 8 € REX(JE+M+L) represents the source signals. Note that subject covariations across all data sets, i.e.,
modalities, are assumed to be the same in jJICA as in ACMTEF, since the same mixing matrix is shared across the data
sets. However, in this case the model does not include an adaptive estimation of contributions from each modality as in
ACMTEF, and though this can be captured to a degree within the weights from the estimated components from each

modality, it represents a more constrained model. The rows of S corresponding to patterns of brain activity are assumed
to be statistically independent.

2.2 Experiments

We make use of EEG, fMRI, and sMRI data collected from patients with schizophrenia and healthy controls to show
the use of ACMTF models to discover potential diagnostic biomarkers for schizophrenia. Our experiments focus on
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joint analysis of EEG and fMRI data, and discuss the effect of different modeling choices, i.e., number of components
(R), the penalty parameter (3), preprocessing, and use of subsets of electrodes. We also discuss the performance of
ACMTF in comparison with jICA. Furthermore, the analysis of only EEG signals and joint analysis of EEG, fMRI,
and sMRI have been studied to show the information gain with each modality and potential issues due to the use of
additional modalities.

2.2.1 Data

The EEG, fMRI and sMRI data were separately collected from 21 healthy controls and 11 patients with schizophrenia
during an auditory oddball task (AOD), where subjects pressed a button when they detected an infrequent target sound
within a series of auditory stimuli. For the fMRI data, we computed task-related spatial activity maps for each subject,
calculated by the general linear model-based regression approach using the statistical parametric mapping toolbox
(SPM 12)'. By making use of these features, we constructed a matrix of 32 subjects by 60186 voxels representing
the fMRI signals. For the EEG data, for each electrode, we averaged small windows around the target tone across the
repeated instances, deriving event-related potentials. Out of 64 electrodes in total, we used 62 electrodes by excluding
the two corresponding to vertical and horizontal electrooculography (EOG) electrodes. Multi-channel EEG signals
were then arranged as a third-order tensor: 32 subjects by 451 time samples by 62 electrodes. In order to assess the
modeling assumptions, we also used a subset of electrodes from frontal, motor and parietal areas, i.e., AF3, AF4, Fz,
T7, C3, Cz, C4, T8, Pz, PO3 and PO, and, in that case, formed a third-order tensor with 11 electrodes as in [35, 36].
For the sMRI data, we computed probabilistically segmented gray matter images for each subject and by using these
features formed a matrix of 32 subjects by 306640 voxels. For more details, see [16].

2.2.2 Experimental Setting

Before the analysis, we centered the third-order EEG tensor across the time mode, and scaled within the subject mode
by dividing each horizontal slice by its standard deviation (see [43] for further details on preprocessing of higher-order
tensors). The fMRI and sMRI data were also preprocessed by centering each row (subject-wise) and dividing each row
by its standard deviation. When fitting the ACMTF model, each data set was also divided by its Frobenius norm to give
equal importance to the approximation of each data set.

In order to demonstrate the information gained by the addition of each modality and sensitivity of the fusion approach
to various modeling choices, the following experiments are carried out:

o Individual analysis of the EEG tensor using a CP model,

e Joint analysis of the EEG tensor coupled with fMRI using an ACMTF model (i) by leaving out signals
from one subject at a time, (ii) for 11-electrode vs. 62-electrode case, (iii) in comparison with jICA, (iv)
with different number of components, R, (v) with different sparsity penalty parameters, 3, (vi) with/without
additional centering across the subject mode.

e Joint analysis of the EEG tensor coupled with fMRI and sMRI using an ACMTF model.

The CP model is fit using CP-OPT [44] from the Tensor Toolbox version 2.5 ? using the nonlinear conjugate gradient
algorithm (NCG). For the ACMTF model, we use ACMTF-OPT [33] from the CMTF Toolbox, also using NCG to fit
the model. Multiple random initializations are used to fit the models, and the solution corresponding to the minimum
function value is reported. Furthermore, the ACMTF model is experimentally validated to be unique by obtaining
the same minimum function value® a number of times and checking the uniqueness of model parameters, i.e., factor
matrices and weights of the factors (up to permutation)*. For jICA, we unfold the EEG tensor in the subject mode
forming a matrix of 32 subjects x 27962 (time-electrodes), and concatenate the resulting matrix with the fMRI matrix.
The concatenated matrix is decomposed using an ICA algorithm based on entropy bound minimization [45], which
makes use of a flexible density model that is a better fit to data formed by concatenating signals from different modalities
[16]. We fit the model using multiple random initializations and report the most stable run determined by a minimum
spanning tree-based approach [46].

"https://www.fil ion.ucl.ac.uk/spm/

2http://www.sandia.gov/ tgkolda/TensorToolbox/

3up to the sixth decimal place

*Depending on the difficulty of the problem, 160-200 random initializations are used to check for uniqueness.
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2.3 Performance Evaluation

The performance is assessed both qualitatively and quantitatively. The qualitative assessment relies on the interpretation
of the extracted temporal and spatial patterns as well as comparisons with the previous findings in the literature on
schizophrenia. For the quantitative assessment, we perform the following:

e Two-sample t-test: Since the ultimate goal of any factorization of this data is the discovery of latent factors that
can differentiate between patients with schizophrenia and healthy controls, we can quantify the performance
of a method based on its ability to produce factors that can provide such a differentiation. With the assumption
of unequal variance for the healthy control and patient groups, a two-sample #-test is applied on each column
of the factor matrix extracted from the subject mode, which is of size 32 by R. Out of R columns, those
that have subject mode vectors that are statistically significant, i.e., with p-values < 0.05, are identified and
corresponding temporal and spatial patterns are reported as potential biomarkers.

e Clustering: Subjects are clustered into two groups based on the factor matrix corresponding to the subject
mode using k-means clustering, where k-means is performed 100 times with different initializations and the
most consistent cluster assignments are used. Unlike the #-test based approach that is performed on each
column individually, clustering is performed on all possible combinations of the columns of the factor matrix
and the performance of the best combination is reported. Therefore, this approach provides a more global
view of the discriminatory power of the resulting factorization than the #-test based approach. The clustering
performance is assessed in terms of accuracy and F}-score, where F-score = %m, and a patient
being clustered as a patient is considered a true-positive.

When assessing different modeling choices, we also report the model fit defined as:
. X —X|?
Fit=100 % ({1 - ———— |,
X

where X stands for the raw data (e.g., EEG tensor or fMRI/sMRI matrix), and X denotes the model. A fit of 100%
means that the data is fully explained by the model. The fit shows whether the model explains the data well and
indicates the unexplained part left in the residuals. Also, the change in model fit for different number of components
shows whether there is a significant gain, in terms of explaining the remaining part in the residuals, by adding more
components.

Finally, we compare the similarity of the significant components extracted by different models using a similarity score

called the factor match score (FMS). The FMS of component &k from two models ffC(l) and 156(2) of the EEG tensor X is

defined as . . T
1 2 (1 (2 @ 2
FMSk(:i:(l),:i:@)) _ al(c) al(c) " bk> bk> " ck> cl(c) 7
= [ ] ek [ e e )<

~ (1) (2

and from two models Y( ), Y( ) of the fMRI matrix Y as
S (ORNC! adMTg®
FMSk(Y(1)7Y(2>) _ « k9% ,
[ ] a2

where a,(j), bgj) , c,(j), d,(;) correspond to the kth column of the factor matrix corresponding to subject, time, electrode
and voxel mode of the ith model, respectively, after finding the best matching factors for the two models. When
components are compared for the models with mismatching dimensions, such as number of subjects or number of
electrodes, the mismatching dimension is omitted in the product. An FMS close to one implies similarity of the
compared components, while very different components will have an FMS close to zero. FMS is used to quantify the

reproducibility of the extracted patterns in addition to qualitative interpretations based on the plots.

For visualization of the extracted components, patterns from fMRI and sMRI voxel modes are plotted as z-maps,
thresholded at z = 2.7, where red indicates an increase in controls over patients and blue indicates an increase in
patients over controls. Patterns extracted from the electrode mode of the EEG tensor are plotted using the topoplot
function from the EEGLAB v13.6.5b [47].

3 Results

3.1 Individual analysis of the EEG tensor using a CP model

As shown in Figure 3, the CP model of the EEG data in the form of a subject by time by electrode tensor constructed
using 62 electrodes has captured significant components in terms of differentiating healthy controls and patients with
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schizophrenia. The model is fit using R = 3 components, and reveals factor matrices A € R32%3, B € R*'*3 and
C € R52%3 corresponding to subject, time and electrode modes, respectively. The fit of the model is 62% indicating
that using only three components a major part of the data can be explained. The ¢-tests performed on the columns of A
indicate that all three components are significant. The first component, represented in Figure 3 A, corresponds to the
third positive peak (P3) and is heavily weighted by central electrodes. The second component, represented in Figure 3
B, refers to the N1-P2 as well as the N2-P3 transitions and is heavily weighted by central and parietal electrodes. The
third component, represented in Figure 3 C, refers to the N2 as well as a negative peak after P3 and is heavily weighted
by frontal and central electrodes. CP models with different number of components have been fitted to the data as well
but those either revealed fewer components with less significance or are degenerate, i.e., a CP model with that many
components is not an appropriate model for the data (see [48] for more on degeneracy). Table 1 shows that subjects can
be clustered into two groups with 81% accuracy using the factor matrix A. Note that clustering performance is similar
to the one achieved using the CP model of a tensor constructed using only a subset of electrodes indicating that the
assumption of same subject coefficients and temporal patterns across all electrodes is not decreasing the performance.
This also may indicate that the additional electrodes are not providing much added information beyond that which is
contained by a subset of the electrodes.

Table 1: Performance in terms of clustering for different modeling values as well as the factor match scores in
comparison to the 10-component ACMTF model (no centering, 62 electrodes).

FMS
Clustering Performance | Component A | Component B
R Centering # of Electrodes | Accuracy (%) [i-score | EEG fMRI | EEG fMRI
3 No 11 78 0.76
EEG (CP) 3 No 62 81 0.79
10 No 11 91 0.87 0.82 0.73 0.80 0.72
10 No 62 88 0.82 1.00 1.00 1.00 1.00
11 No 62 88 0.80 0.95 0.92 0.65 0.61
EEG - fMRI 12 No 62 91 0.86 0.93 0.89 0.56 0.61
(ACMTF) 9 Yes 62 88 0.78 0.82 0.80 0.64 0.56
10 Yes 62 91 0.88 0.85 0.81 0.57 0.57
11 Yes 62 91 0.87 0.84 0.81 0.69 0.55
12 Yes 62 88 0.78 0.66 0.63 0.65 0.57
10 No 62 84 0.74
EEG - fMRI 15 No 62 82 0.70
(GICA) 20 No 62 91 0.84
10 No 62 84 0.71 0.93 0.86 0.87 0.84
EEG - fMRI -sMRI | 10 Yes 62 91 0.87 0.78 0.73 0.68 0.60
(ACMTF) 15 Yes 62 91 0.86 - - 0.66 0.58

3.2 Joint analysis of EEG and fMRI

Shown in Figure 4, the joint analysis of the EEG tensor and fMRI matrix using an ACMTF model has revealed
significant components in terms of differentiating between healthy controls and patients while also providing spatial
patterns in much higher resolution and improving the clustering performance compared with the CP model of the EEG
tensor. The 10-component ACMTF model extracts factor matrices A € R32X10 B ¢ R#1x10 C ¢ R62x10 and
D € R60186x10 corresponding to subject, time, electrode, and voxel modes, respectively, as well as weights of the
components in EEG (A € R19%1) and fMRI (0 € R19*1), The sparsity penalty parameter is set to 3 = 103, The fit is
79% and 65% for EEG and fMRI, respectively, indicating that the extracted factors, which have high weights in both
data sets indicating shared factors, account for a large part of both data sets. The ¢-test on the columns of A reveals that
out of ten components, only two, components 1 and 9, are statistically significant. Figure 4 A and B illustrate the two
significant components in time (b,.), electrode (c,.) and voxel (d,-) modes. Figure 4 C shows component weights in each
data set. From Figure 4, we see that though both significant components have a contribution from both EEG and fMRI,
the contribution from EEG to each of these components is greater. This means that the discriminatory information plays
a larger part in EEG relative to the other components in EEG than it does for the fMRI. The first component, shown
in Figure 4 A, is similar to the component shown in Figure 3 C, and refers to the P2-N2 transition as well as the P3
peak and is heavily weighted by the frontal and central electrodes. A similar activation pattern is seen in the positive
activations in the fMRI, though with greater spatial resolution. The second component, shown in Figure 4 B, shares
some similarity with the component shown in Figure 3 A, since both are related to the P3 peak but this component is
more heavily weighted by the frontal electrodes. The fMRI in Figure 4 B indicates a decrease in activation of controls
versus patients in parts of the anterior sensorimotor cortex. We should note that there are some similarities between the
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Figure 3: Temporal and spatial patterns from the statistically significant components of the CP model. (A) Component
1 corresponds to the P3 peak mainly represented by central electrodes, (B) Component 2 refers to the N1-P2 as well
as N2-P3 transitions, with high contributions from central and parietal electrodes, (C) Component 3 refers to the N2
as well as a negative peak after P3, heavily weighted by frontal and central electrodes. The corresponding p-values
are 2.1 x 1073, 1.6 x 1072, 1.4 x 10~*, respectively. Columns of the factor matrix in the time mode are in red while
green plots show signals from individual electrodes averaged across all subjects.

areas highlighted in the topographic maps and the regions highlighted in the fMRI. The areas of increased activation
of controls over patients in the fMRI, namely frontal and sensorimotor, generally correspond to the greatest weights
in the topographic maps. Similar components have been found previously in other analyses of similar data [36], thus
increasing our confidence in the results. In comparison to the individual analysis of the EEG tensor, the clustering
performance is also much higher, i.e., 88% accuracy and F} score of 0.82, as shown in Table 1. This indicates that the
ACMTF reveals more discriminatory factors through the inclusion of complementary information from the fMRI.

3.2.1 Sensitivity Analyses

Leave-one-out The patterns captured in different modes using an ACMTF model are reproducible in case of changes
in data sets. In order to evaluate the consistency of the results to changes in the original data, we leave out one subject
at a time and fit the ACMTF model using the same parameters (i.e., R = 10, 5 = 10~3). In other words, we construct
32 different EEG-fMRI data set pairs (with 31 subjects) and compare the significant factors extracted using the ACMTF
model of each pair with the model derived using 32 subjects. Table 2 shows that average FMS for component 1 (Figure
4 A), which is the most significant factor, is 0.98 for EEG and 0.95 for fMRI indicating close to exact recovery of
the same patterns. Average FMS for the less significant component, i.e., component 9 (Figure 4 B), is around 0.90
indicating similar patterns. Furthermore, the average clustering performance is the same as the performance of the
original model estimated using data from 32 subjects.

Table 2: Leave-one-out sensitivity analysis: Average values (standard deviation) of FMS, clustering performance and fit
of the models built on data sets with 31 subjects.

FMS Clustering Performance Fit (%)

Component A Component B
EEG VIRT EEG TVRT Accuracy (%) Fi-score EEG fMRI

0.98 (0.05) | 0.95(0.09) | 0.92(0.16) | 0.90 (0.16) 87.7 2.4 0.81(0.04) | 79.5 (0.4) | 65.6 (0.3)

11 electrodes vs. 62 electrodes When jointly analyzing EEG and fMRI, ACMTF achieves a slightly better perfor-
mance using a subset of electrodes from certain regions of interest during the construction of the EEG tensor than
the case where all 62 electrodes are used to construct the tensor. In our preliminary studies [36], we observed similar
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Figure 4: Temporal and spatial patterns from the statistically significant components of the ACMTF model of the EEG
tensor with 62 electrodes and fMRI data, with R = 10. (A) Component 1 refers to the P2-N2 transition as well as the
P3 peak, heavily weighted by the frontal and central electrodes in the EEG, and the fMRI shows increased activation
of controls over patients in the sensorimotor cortex, (B) Component 9 is related to the P3 peak, heavily weighted by
the frontal electrodes in the EEG and the fMRI indicates a decrease in activation of controls versus patients in some
regions of the sensorimotor cortex and parietal lobe, (C) Weights of the components in each data set. The corresponding
p-values are 6.2 x 1073, 1.9 x 1072, respectively. Columns of the factor matrix in the time mode are in red while green
plots show signals from individual electrodes averaged across all subjects.

components when comparing the 11-electrode case with 62-electrode case while achieving higher statistical significance
and better interpretability using 11 electrodes. These observations are also supported by our findings in this study
on a slightly different set of subjects (38 subjects in [36] vs. 32 subjects in this paper). Figure 5 illustrates the two
most significant components captured by a 10-component ACMTF model of the EEG tensor with 11 electrodes and
fMRI data’. The fit is 80% and 65% for EEG and fMRI, respectively. As previously observed, both components have
higher significance thus indicating that the additional electrodes are not contributing much additional discriminatory
information compared with the original 11 electrodes. This may also be related to the fact that the most contributing
electrodes to the components in Figure 4 are the electrodes that are part of the set of 11 electrodes. The first component,
shown in Figure 5 A, is similar to the component shown in Figure 4 A and refers to P2-N2 transition as well as the P3
peak though with more parietal activation in the fMRI. The second component, shown in Figure 5 B, is similar to the
component shown in Figure 4 B and refers to the P3 peak though has more parietal activation in the fMRI, similar to
the default mode network. When significant components from 11- and 62-electrode cases are compared, FMS is 0.82
for EEG (excluding the electrode mode) and 0.73 for fMRI for the component given in Figure 4 A, and 0.80 for EEG
and 0.73 for fMRI for Figure 4 B. These scores indicate that components are similar to some extent but are not identical.
Table 1 indicates slightly higher clustering performance for the 11-electrode case. To summarize, considering that there
is minimal difference in performance beyond a slight increase in significance, and that the factors are similar, using all
electrodes is preferable to choosing a subset of electrodes, as the latter requires prior knowledge about the functionally
relevant electrodes to select and may also introduce a bias by targeting specific regions.

ACMTF vs. JICA The traditional fusion approach jICA can also capture components that can differentiate between
healthy controls and patients; however, jICA provides less interpretable patterns. For jICA, the EEG tensor unfolded in
the subject mode is concatenated with the fMRI data resulting in a 32 (subject) by 88148 (time x electrode - voxel)
matrix. When this matrix is modeled using jICA with R = 10, 15, 20 components, the 10-component model reveals a
single component that may be considered statistically significant but the p-value is 0.05. The 15-component model
reveals a more significant component as illustrated in Figure 6. JICA captures neither a single temporal pattern for
all electrodes nor a spatial pattern for all time points, making the intepretation of the components more difficult. In

ST-tests reveal, in total, four statistically components for this model. However, the other two components, not illustrated in Figure
5, are less significant and have lower FMS values.
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Figure 5: Temporal and spatial patterns from the statistically significant components of the ACMTF model of the EEG
tensor with 11 electrodes and fMRI data, with R = 10. (A) Component 10 corresponds to the P2-N2 transition as well
as the P3 peak in the EEG with an increase in sensorimotor and parietal activation of controls over patients in the fMRI,
(B) Component 5 refers to the P3 peak with a decrease in default mode activity of controls versus patients in the fMRI,
(C) Weights of the components in each data set. The corresponding p-values are 4.3 x 1073, 8.0 x 1073, respectively.
Columns of the factor matrix in the fime mode are in red while green plots show signals from individual electrodes
averaged across all subjects.

order to provide insight into the topology, spatial patterns as in ACMTF can be computed post hoc from the analysis,
e.g., by using peak value of each channel to construct a spatial map for each component [49]; however, that comes
with additional assumptions and does not reveal the underlying patterns as naturally as a tensor factorization-based
approach. The component in Figure 6 is related to the P2-N2 and N2-P3 transition and the fMRI map includes the
expected temporal lobe and default mode regions. We should note that using a 20-component model, a component
similar to the one in Figure 6 is captured, indicating that jICA has some stability in regards to the value of R. Table 1
shows that while the clustering performance of jICA is lower compared with ACMTF models of EEG and fMRI data
sets for R = 10 and R = 15, it is similar for R = 20, indicating that methods with different assumptions may perform
the best with different number of components.

46

relative voltage

-4.41

0 200 400 600
milliseconds

Figure 6: The statistically significant component captured by the jJICA model fitted to the concatenation of the unfolded
EEG tensor (with 62 electrodes) and fMRI, with R = 15. The corresponding p-value is 5.2 x 1073, Parts of s,
corresponding to the time samples for each electrode in EEG and voxels in fMRI are plotted. The EEG part is related to
the P2-N2 and N2-P3 transitions. The fMRI indicates some increased activation in the temporal lobe of controls versus
patients as well as some posterior cingulate representing the default mode network. In the EEG plot, green dashed plots
show signals from individual electrodes averaged across all subjects.
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Parameter Selection The ACMTF model is sensitive to two parameters, i.e., the number of components, R, and the
sparsity penalty parameter, 3. So far, R and 3 are set to R = 10 and 3 = 1073. In order to probe the effect of the
model order, R, we have increased the number of components until the model fails to give a unique solution. We find
that as we increase the number of components, the most significant component (i.e., Figure 4 A) is still consistently
captured; however, with a decreasing level of similarity. With both R = 11 and R = 12, the ACMTF model is still
unique and reveals significant components that can differentiate between patients and healthy controls. The fit is 81%
for EEG and 68% for fMRI with R = 11 while 82% for EEG and 70% for fMRI with R = 12, indicating that additional
components do not explain much additional information. Table 1 shows that a component with a FMS score around
0.90 when compared with the most significant component in a 10-component model (Figure 4 A) has been revealed by
both models. The less significant component (Figure 4 B), on the other hand, has limited similarity of around FMS
0.60 with the captured components. The clustering performance for both R = 11 and R = 12 is similar to that of
R = 10. Figure S1 (in Supp. Material) illustrates the significant components captured by the ACMTF model with
R = 12 components. When R is increased any further, we cannot obtain a unique solution.

The sensitivity of an ACMTF model to different values of 5 has been studied in [33] using simulated data sets, and
it has been shown that in the presence of both shared and unshared components, small values such as 3 = 1073 or
B = 10~* are effective in terms of uniquely recovering the underlying patterns. For 3 = 0, which corresponds to a
CMTF model, the model fails to give a unique solution. For larger values, such as 3 = 1072, it is still possible to find
the true solution but the algorithm is very sensitive to the initialization. When EEG and fMRI data sets are jointly
analyzed using a 10-component model, weights of the components shown in Figure 4 C indicate that all components
are shared. However, even in the presence of only shared components, 3 = 10~ fails to give a unique solution when
we get the same function values for different runs while for 8 = 1072, it is not possible to reach to the same function
values even with many random initializations due to the sensitivity to initialization.

Preprocessing In addition to the preprocessing steps described in Section 2, in data fusion studies, further prepro-
cessing may be needed, in particular, when the average behavior across subjects accounts for a large variation in one of
the data sets vs. the other. SMRI is such a data set and we perform additional centering when we include sSMRI in the
analysis. Here, when we only consider the joint analysis of EEG and fMRI, an additional centering step across the
subjects mode does not affect the clustering performance of the ACMTF model and the significant component in Figure
4 A has also been captured with FMS between 0.80-0.85 (for different number of components R = 9,10, 11) as shown
in Table 1. FMS drops for R = 12. The less significant component (Figure 4 B), on the other hand, is also estimated,
but with FMS within the range 0.55-0.69. Figure S2 (in Supp. Material) illustrates the significant components captured
by an ACMTF model with R = 12 components. It is important to note that in this case, despite the low FMS values,
temporal and spatial patterns are similar to the ones observed in Figure 4 and the interpretation of these two components
is the same.

3.3 Joint analysis of EEG, fMRI and sMRI

Inclusion of the sSMRI data introduces several issues highlighting challenges in data fusion, in particular, preprocessing.
If a joint analysis of EEG, fMRI and sMRI data is carried out using an ACMTF model after the preprocessing steps
described in Section 2.2.2, the model has two statistically significant components in terms of differentiating healthy
controls and patients. Figure 7 illustrates the temporal patterns as well as functional/structural spatial patterns revealed
by the significant components. Both components are similar to the components shown in Figure 4 with FMS values
between 0.84 - 0.93 as given in Table 1 as well as components shown in Figure 3. However, now information from the
two functional modalities, EEG and fMRI, has been combined with information from the structural modality, SMRI.
In Figure 7 A, the sMRI portion of the component shows an increase in concentration of gray matter in controls over
patients in sections of the parietal lobe and cerebellum. In Figure 7 B, the sMRI portion of the component shows
increases in gray matter for controls over patients in multiple portions of the frontal and parietal lobes. Overall these
components are similar to components found previously in other analyses of data from the same subjects but with 11
electrodes [35].

Weights of the components, shown in Figure 8, indicate that SMRI does not contribute much to the significant
components. In most components the weights of the components in the SMRI are low, indicating potentially unshared
factors. However, a closer look at the model reveals that the model fit is 97% for sMRI, while it is 79% for EEG and
64% for fMRI (see Figure S3 in Supp. Material for the singular value spectrum of each data set), and components with
high weights in sSMRI are mainly modeling the average structure across subjects with highly correlated components,
i.e., the correlation of component vector in the voxel mode is 0.95 for components 1 and 5. Therefore, data sets must
be centered across the subject mode to incorporate information other than the mean from sMRI into the analysis.
Furthermore, as a result of including components from sMRI, which do not differentiate between the groups, we also
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Figure 7: Temporal and spatial patterns from the statistically significant components of the ACMTF model of the EEG
tensor with 62 electrodes, fMRI and sMRI data, with R = 10. (A) Component 10 refers to the P2-N2 transition as
well as the P3 peak, heavily weighted by the frontal and central electrodes in the EEG, an increase in sensorimotor and
parietal activation of controls over patients in the fMRI, and an increase in concentration of gray matter in controls
over patients in sections of the parietal lobe and cerebellum in the sMRI, (B) Component 6 corresponds to the P3
peak heavily weighted the frontal electrodes in the EEG, the fMRI indicates a decrease in activation of controls versus
patients in some regions of the sensorimotor cortex and parietal lobe, and increases in gray matter for controls over
patients in multiple portions of the frontal and parietal lobes in the SMRI. The corresponding p-values are 8.0 x 1073,
4.0 x 1073, respectively. Columns of the factor matrix in the fime mode are in red while green plots show signals from
individual electrodes averaged across all subjects.

observe a drop in the clustering performance in Table 1. However, we do note that the significance of both components
have increased, thus indicating that there is additional discriminatory information that the sSMRI is providing.
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Figure 8: Weights of the components in EEG, fMRI and sMRI extracted by the ACMTF model of the EEG tensor with
62 electrodes, fMRI and sMRI data, with R = 10 and no additional centering across the subject mode.

When all data sets are centered across the subject mode, the ACMTF model has three statistically significant components,
which are illustrated in Figure S4 (in Supp. Material). The two most significant ones, shown in Figure S4 A and B, are
similar to the components in Figure 4, also indicated by the FMS values in Table 1. The third component represents the
N2 peak as well as the P3 peak in the EEG. The topographic map indicates activation in the parietal lobe, while the
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fMRI shows increased activation of controls over patients in the sensorimotor cortex and a decrease in activation of
controls versus patients in the occipital lobe. The sMRI portion of the component indicates changes to gray matter
concentration throughout the frontal and parietal lobes. Note that the clustering performance of the overall model has
improved significantly by modeling more relevant structure in sSMRI compared to the case where there is no centering.
The model fit is 69%, 47%, and 70% for EEG, fMRI and sMRI, respectively. In order to increase the model fits, in
particular for fMRI, when we increase the number of components to R = 15, a unique model can still be obtained with
model fits 78%, 64% and 79% for EEG, fMRI and sMRI, respectively. In that case, however, only a single statistically
significant component (p-value =1.4 x 10~%) that is similar to Figure 4 B, is captured. The clustering performance of
the 15-component ACMTF model is similar to the 10-component case. These observations indicate that the model is
consistent to some degree across models with different numbers of components, by still revealing one of the significant
components. The additional components, which explain some of the remaining information in the data sets, do not
explicitly contribute to additional significant components but may help with increasing the significance of the relevant
component - without hurting the overall clustering performance.

4 Discussion

In this paper, we have jointly analyzed multi-modal neuroimaging signals, i.e., EEG, fMRI and sMRI, collected
from patients with schizophrenia and healthy controls, using a structure-revealing CMTF model. The model captures
temporal as well as functional/structural spatial patterns that can differentiate between patients and healthy controls.
Compared to traditional fusion approaches such as jICA, the structure-revealing CMTF model enables us to exploit
the multilinear structure of multi-channel EEG signals providing both interpretable patterns and improved uniqueness
properties without imposing additional constraints on the extracted patterns. Through joint analysis of EEG, and fMRI,
the following temporal and spatial patterns are identified as potential biomarkers:

e Pattern 1: The temporal part referring to the P2-N2 transition as well as the P3 peak, and the functional

spatial part showing increased activation of controls over patients in the sensorimotor cortex.

e Pattern 2: The temporal part referring to the P3 peak, and the functional spatial part indicating a decrease in
activation of controls versus patients in some regions of the sensorimotor cortex and parietal lobe.

The biomarkers that are extracted using the ACMTF model correspond to signals observed in previous investigations
of the structural and functional impacts of schizophrenia. The EEG signals are similar to those observed in previous
schizophrenia research [50, 51]. Additionally, the regions in spatial patterns have also been shown to be affected in
patients with schizophrenia previously [52, 53, 54]. Through the incorporation of the SMRI data, these patterns have
been complemented with the following structural spatial parts: (i) Pattern 1, the structural spatial part indicating an
increase in concentration of gray matter in controls over patients in sections of the parietal lobe and cerebellum. (ii)
Pattern 2, the structural spatial part showing increases in gray matter for controls over patients in multiple portions
of the frontal and parietal lobes. All three regions have been shown to be impacted in patients with schizophrenia
[55, 56, 57, 58]. These patterns are reproducible and have been revealed even in the case of changes in data sets, as we
have illustrated by leaving out data from one subject at a time and in our preliminary studies on a slightly different set
of subjects [36] and using a subset of electrodes [35].

Any method targeting biomarker discovery must capture the underlying patterns corresponding to the potential
biomarkers uniquely; therefore, in this paper, we have used the structure-revealing CMTF model that focuses on unique
identification of underlying patterns when jointly analyzing multi-modal data sets with shared and unshared factors,
rather than other CMTF methods that have proved useful in missing data estimation applications (where uniqueness
of underlying patterns is not of interest) [59, 60]. In addition to the patterns interpreted as potential biomarkers, the
structure-revealing CMTF model also reveals weights of the patterns that can be used to identify shared/unshared
patterns in each data set and quantify the contribution from each data set. In joint analysis of EEG and fMRI, all
components including the statistically significant components differentiating between patients and controls, correspond
to shared components. Similarly, in joint analysis of EEG, fMRI and sMRI, as long as necessary preprocessing steps
such as centering are carried out as discussed in Section 3.3, all components are shared among three modalities as
shown in Figure S5 (in Supp. Material).

One potential drawback of the structure-revealing CMTF model, on the other hand, is sensitivity to its parameters,
i.e., the number of components, R, and the sparsity penalty parameter, 3. Despite the sensitivity, we have consistently
observed similar statistically significant patterns for different number of components, as shown in Table 1 in terms of
FMS values. Note that FMS takes into account every entry in the factor vectors (i.e., many voxels in the fMRI) and it is
rather a strict measure. Therefore, we have observed that even for lower FMS values, interpretations of the captured
patterns are the same visually (e.g., Figure 4 vs. Figure S2). Another challenge as a result of sensitivity to model
parameters is that the model must be experimentally validated to be unique. An important future research direction is to
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study the landscape of the optimization problem and develop ways to make the problem less sensitive to parameters as
well as the initialization. Furthermore, while we have used the same sparsity penalty parameter for all data sets in this
paper, in some applications, this parameter may need to be data-specific depending on the structure of each data set.

While data fusion methods are of interest in many disciplines, preprocessing steps have not been well studied within the
framework of data fusion. In this paper, we have shown that while centering across the subject mode does not affect the
joint analysis of EEG and fMRI data, it has a dramatic effect when the sSMRI data is incorporated, and the interpretation
of the component weights changes significantly. In addition to such preprocessing steps, there are further steps that
should be carefully incorporated to data fusion methods such as outlier removal, residual analysis, which may also
enable better tools for selecting the number of components.

This paper is a systematic study of the structure-revealing CMTF model for biomarker discovery but with limited
number of subjects. In order to see the real promise of the method as a biomarker discovery approach and assess the
validity of the potential biomarkers for schizophrenia, joint analysis of EEG, fMRI and sMRI signals must be carried
out on a larger set of subjects and also including patients with different neurological disorders. Understanding the
promise and limitations of such CMTF-based approaches is crucial as there are increasingly more studies exploiting the
multilinear structure of different neuroimaging signals [61, 62, 63, 64, 65, 66, 31, 67].

Ethics Statement

The protocol was reviewed and approved by the IRB at Hartford Hospital and all participants provided written, informed,
consent.

Author Contributions

EA and TA conceived the project. EA, YLS, and TA designed the experiments. EA and CS performed the data analysis.
YLS, TA, and VC interpreted the extracted patterns. EA, CS, YLS, and TA were involved in the preparation of the
manuscript. All authors have given approval to the final version of the manuscript.

Funding

This work has been funded in part by the following grants: NSF-CCF 1618551, NSF-NCS 1631838, NIH-NIBIB
RO1EB005846, and NIH-T32 HD049311.

Supplemental Data

Supplementary Material has been included.

References

[1] S. A. Bunge and I. Kahn. Cognition: An overview of neuroimaging techniques. Encyc. of Neuroscience,
2:1063-1067, 2009.

[2] K. Uludag and A. Roebroeck. General overview on the merits of multimodal neuroimaging data fusion. Neurolm-
age, 102(3-10), 2014.

[3] J. Daunizeau, H. Laufs, and K. J. Friston. EEG-fMRI information fusion: Biophysics and data analysis. In EEG -
JMRI. Springer, Berlin, Heidelberg, 2009.

[4] J. Sui, Q. Yu, H. He, G. D. Pearlson, and V. D. Calhoun. A selective review of multimodal fusion methods in
schizophrenia. Frontiers in Human Neuroscience, 6(27), 2012.

[5] S. Dahne, F. Biebmann, W. Samek, S. Haufe, D. Goltz, C. Gundlach, A. Villringer, S. Fazli, and K-R Muller.
Multivariate machine learning methods for fusing multimodal functional neuroimaging data. Proceedings of the
IEEE, 103:1507-1530, 2015.

[6] S.Liu, S. Liu, W. Cai, H. Che, S. Pujol, R. Kikinis, D. Feng, M. J. Fulham, and ADNI. Multimodal neuroimaging
feature learning for multiclass diagnosis of alzheimer’s disease. /IEEE Transactions on Biomedical Engineering,
62:1132-1140, 2015.

14


http://dx.doi.org/10.1101/543603

bioRxiv preprint first posted online Feb. 8, 2019; doi: http://dx.doi.org/10.1101/543603. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

[7] J. Sui, S. Qi, T. G. M. van Erp, J. Bustillo, R. Jiang, D. Lin, J. A. Turner, E. Damaraju, A. R. Mayer, Y. Cui, Z. Fu,
Y. Du, J. Chen, S. G. Potkin, A. Preda, D. H. Mathalon, J. M. Ford, J. Voyvodic, B. A. Mueller, A. Belger, S. C.
McEwen, D. S. O’Leary, A. McMahon, T. Jiang, and V. D. Calhoun. Multimodal neuromarkers in schizophrenia
via cognition-guided MRI fusion. Nature Communications, 9(3028), 2018.

[8] T. Takahashi and M. Suzuki. Brain morphologic changes in early stages of psychosis: Implications for clinical
application and early intervention. Psychiatry and Clinical Neuroscience, 72:556-571, 2018.

[9] O. Alter, P. O. Brown, and D. Botstein. Generalized singular value decomposition for comparative analysis of
genome-scale expression data sets of two different organisms. PNAS, 100:3351-3356, 2003.

[10] E. F. Lock, K. A. Hoadley, J. S. Marron, and A. B. Nobel. Joint and individual variation explained (jive) for
integrated analysis of multiple data types. The Annals of Applied Statistics, 7:523-542, 2013.

[11] R. C. Farias, J. E. Cohen, and P. Comon. Exploring multimodal data fusion through joint decompositions with
flexible couplings. IEEE Transactions on Signal Processing, 64(18):4830-4844, 2016.

[12] A. K. Smilde, I. Mage, T. Naes, T. Hankemeier, M. A. Lips, H. A.L. Kiers, E. Acar, and R. Bro. Common and
distinct components in data fusion. Journal of Chemometrics, 31:¢2900, 2017.

[13] E. Acar, R. Bro, and A. K. Smilde. Data fusion in metabolomics using coupled matrix and tensor factorizations.
Proceedings of the IEEE, 103:1602-1620, 2015.

[14] V. D. Calhoun, T. Adali, G. D. Pearlson, and K. A. Kiehl. Neuronal chronometry of target detection: Fusion of
hemodynamic and event-related potential data. Neurolmage, 30:544-553, 2006.

[15] V. D. Calhoun, J. Liu, and T. Adali. A review of group ICA for fMRI data and ICA for joint inference of imaging,
genetic, and ERP data. Neurolmage, 45:5S163-S172, 2009.

[16] T. Adali, Y. Levin Schwartz, and V. D. Calhoun. Multimodal data fusion using source separation: Application to
medical imaging. Proceedings of the IEEE, 103:1494-1506, 2015.

[17] A. Klami, S. Virtanen, and S. Kaski. Bayesian canonical correlation analysis. Journal of Machine Learning
Research, 14:965-1003, 2013.

[18] W. Swinnen, B. Hunyadi, E. Acar, S. Van Huffel, and M. De Vos. Incorporating higher dimensionality in
joint decomposition of EEG and fMRI. In Eusipco’14: Proceedings of the 22nd European Signal Processing
Conference, pages 121-125, 2014.

[19] M De Vos, A Vergult, L De Lathauwer, W De Clercq, S Van Huffel, P Dupont, A Palmini, and W. Van Paesschen.
Canonical decomposition of ictal scalp EEG reliably detects the seizure onset zone. Neurolmage, 37:844-854,
2007.

[20] E. Acar, C. A. Bingol, H. Bingol, R. Bro, and B. Yener. Multiway analysis of epilepsy tensors. Bioinformatics,
23(13):110-i18, 2007.

[21] J. Mocks. Topographic components model for event-related potentials and some biophysical considerations. /[EEE
Transactions on Biomedical Engineering, 35:482—-484, 1988.

[22] F. Miwakeichi, E. Martinez-Montes, P. A. Valdés-Sosa, N. Nishiyama, H. Mizuhara, and Y. Yamaguchi. Decompos-
ing EEG data into space-time-frequency components using parallel factor analysis. Neurolmage, 22:1035-1045,
2004.

[23] M. Mgrup, L. K. Hansen, and S. M. Arnfred. ERPWAVELAB a toolbox for multi-channel analysis of time -
frequency transformed event related potentials. Journal of Neuroscience Methods, 161:361-368, 2007.

[24] F. Cong, Q-H Lin, L-D Kuang, X-F Gong, P. Astikainen, and T. Ristaniemi. Tensor decomposition of EEG signals:
A brief review. Journal of Neuroscience Methods, pages 59—69, 2015.

[25] H. Becker, P. Comon, and L. Albera. Tensor-based processing of combined EEG/MEG data. In Eusipco’12:
Proceedings of the 20th European Signal Processing Conference, pages 275-279, 2012.

[26] K. Naskovska, A. A. Korobkov, M. Haardt, and J. Haueisen. Analysis of the photic driving effect via joint EEG
and MEG data processing based on the coupled CP decomposition. In Eusipco’17: Proceedings of the 25th
European Signal Processing Conference, pages 1325-1329, 2017.

[27] B. Rivet, M. Duda, A. Guerin-Dugue, C. Jutten, and P. Comon. Multimodal approach to estimate the ocular
movements during EEG recordings: a coupled tensor factorization method. In EMBC’15: Proceedings of 37th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2015.

[28] E. Karahan, P. A. Rojas-Lopez, M. L. Bringas-Vega, P. A. Valdes-Hernandez, and P. A. Valdes-Sosa. Tensor
analysis and fusion of multimodal brain images. Proceedings of the IEEE, 103:1531-1559, 2015.

15


http://dx.doi.org/10.1101/543603

bioRxiv preprint first posted online Feb. 8, 2019; doi: http://dx.doi.org/10.1101/543603. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

[29] B. Hunyadi, W. Van Paesschen, M. De Vos, and S. Van Huffel. Fusion of electroencephalography and functional
magnetic resonance imaging to explore epileptic network activity. In Eusipco’ 16: Proceedings of the 24th
European Signal Processing Conference, pages 240-244, 2016.

[30] S. Van Eyndhoven, B. Hunyadi, L. De Lathauwer, and S. Van Huffel. Flexible data fusion of EEG-fMRI: Revealing
neural-hemodynamic coupling through structured matrix-tensor factorization. In Eusipco’17: Proceedings of the
25th European Signal Processing Conference, pages 26-30, 2017.

[31] C. Chatzichristos, M. Davies, J. Escudero, E. Kofidis, and S. Theodoridis. Fusion of EEG and fMRI via soft
coupled tensor decompositions. In Eusipco’l8: Proceedings of the 26th European Signal Processing Conference,
2018.

[32] A.R. Groves, C. F. Beckmann, S. M. Smith, and M. W. Woolrich. Linked independent component analysis for
multimodal data fusion. Neurolmage, 54:2198-2217, 2011.

[33] E. Acar, E. E. Papalexakis, G. Gurdeniz, M. A. Rasmussen, A. J. Lawaetz, M. Nilsson, and R. Bro. Structure-
revealing data fusion. BMC Bioinformatics, 15:239, 2014.

[34] L. De Lathauwer and E. Kofidis. Coupled matrix-tensor factorizations - the case of partially shared factors. In
ASILOMAR’17: Proceedings of the Asilomar Conference on Signals, Systems and Computers, 2017.

[35] E. Acar, Y. Levin-Schwartz, V. D. Calhoun, and T. Adali. ACMTF for fusion of multi-modal neuroimaging data
and identification of biomarkers. In Eusipco’17: Proceedings of the 25th European Signal Processing Conference,
pages 673-677, 2017.

[36] E. Acar, Y. Levin-Schwartz, V. D. Calhoun, and T. Adali. Tensor-based fusion of EEG and FMRI to understand
neurological changes in schizophrenia. In ISCAS ’17: Proceedings of IEEE International Symposium on Circuits
and Systems, pages 314-317, 2017.

[37] R. A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-
modal factor analysis. UCLA working papers in phonetics, 16:1-84, 1970.

[38] J. D. Carroll and J. J. Chang. Analysis of individual differences in multidimensional scaling via an N-way
generalization of “Eckart-Young” decomposition. Psychometrika, 35:283-319, 1970.

[39] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and
Physics, 6(1):164-189, 1927.

[40] J. B. Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic
complexity and statistics. Linear Algebra and its Applications, 18(2):95-138, 1977.

[41] N. D. Sidiropoulos and R. Bro. On the uniqueness of multilinear decomposition of N-way arrays. Journal of
Chemometrics, 14(3):229-239, 2000.

[42] M. Sorensen and L. De Lathauwer. Coupled canonical polyadic decompositions and (coupled) decompositions in
multilinear rank—(l;. ,,, I , 1) terms — part i: Uniqueness. SIAM Journal on Matrix Analysis and Applications,
36(2):496-522, 2015.

[43] R. Bro and A. K. Smilde. Centering and scaling in component analysis. Journal of Chemometrics, 17(1):16-33,
2003.

[44] E. Acar, D. M. Dunlavy, and T. G. Kolda. A scalable optimization approach for fitting canonical tensor decompo-
sitions. Journal of Chemometrics, 25(2):67-86, February 2011.

[45] Xi-Lin Li and Tiilay Adali. Independent component analysis by entropy bound minimization. /[EEE Transactions
on Signal Processing, 58(10):5151-5164, 2010.

[46] W. Du, Y. Levin-Schwartz, G. D. Fu, S. Ma, V. D. Calhoun, and T. Adali. The role of diversity in complex ICA
algorithms for fMRI analysis. Journal of Neuroscience Methods, 264:129-135, 2016.

[47] A.Delorme and S. Makeig. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics. Journal
of Neuroscience Methods, 134:9-21, 2004.

[48] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455-500, 2009.

[49] J. Liu, K. A. Kiehl, G. Pearlson, N. I. Perrone-Bizzozero, T. Eichele, and V. D. Calhoun. Genetic determinants of
target and novelty-related event-related potentials in the auditory oddball response. Neurolmage, 46:809-816,
2009.

[50] J. Kayser, C. E. Tenke, R. Gil, and G. E. Bruder. ERP generator patterns in schizophrenia during tonal and
phonetic oddball tasks: Effects of response hand and silent count. Clinical EEG and Neuroscience, 41(4):184-195,
2010.

16


http://dx.doi.org/10.1101/543603

bioRxiv preprint first posted online Feb. 8, 2019; doi: http://dx.doi.org/10.1101/543603. The copyright holder for this preprint (which
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

[51] V. D. Calhoun, L. Wu, K. Kiehl, T. Eichele, and G. Pearlson. Aberrant processing of deviant stimuli in
schizophrenia revealed by fusion of FMRI and EEG data. Acta Neuropsychiatrica, 22(3):127-138, 2010.

[52] D. H. Wolf, B. I. Turetsky, J. Loughead, M. A. Elliott, R. Pratiwadi, R. E. Gur, and R. C. Gur. Auditory oddball
fMRI in schizophrenia: Association of negative symptoms with regional hypoactivation to novel distractors. Brain
Imaging and Behaviour, 2(2):132-145, 2008.

[53] M. J. Minzenberg, A. R. Laird, S. Thelen, C. S. Carter, and D. C. Glahn. Meta-analysis of 41 functional

neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66(8):811-822,
20009.

[54] J. Schroder, M. Essig, K. Baudendistel, T. Jahn, I. Gerdsen, A. Stockert, L. R. Schad, and M. V. Knopp. Motor
dysfunction and sensorimotor cortex activation changes in schizophrenia: A study with functional magnetic
resonance imaging. Neurolmage, 9:81-87, 1999.

[55] M. E. Shenton, T. J. Whitford, and M. Kubicki. Structural neuroimaging in schizophrenia: from methods to
insights to treatments. Dialogues in Clinical Neuroscience, 12(3):317-332, 2010.

[56] B. Olabi, I. Ellison-Wright, A. M. Mclntosh, S. J. Wood, E. Bullmore, and S. M. Lawrie. Are there progressive
brain changes in schizophrenia? A meta-analysis of structural magnetic resonance imaging studies. Biological
Psychiatry, 70:88-96, 2011.

[57] O. Lungu, M. Barakat, S. Laventure, K. Debas, S. Proulx, D. Luck, and E. Stip. The incidence and nature of

cerebellar findings in schizophrenia: A quantitative review of fMRI literature. Schizophrenia Bulletin, 39(4):797-
806, 2013.

[58] B. K. Brent, H. W. Thermenos, M. S. Keshavan, and L. J. Seidman. Gray matter alterations in schizophrenia
high-risk youth and early-onset schizophrenia. Child and Adolescent Psychiatric Clinics of North America,
22(4):689-714, 2013.

[59] V. W. Zheng, B. Cao, Y. Zheng, X. Xie, and Q. Yang. Collaborative filtering meets mobile recommendation: A
user-centered approach. In AAAI’10: Proceedings of the 24th Conf. on Artificial Intelligence, pages 236-241,
2010.

[60] B. Ermis, E. Acar, and A. T. Cemgil. Link prediction in heterogeneous data via generalized coupled tensor
factorization. Data Mining and Knowledge Discovery, 29:203-236, 2015.

[61] A.H. Andersen and W. S. Rayens. Structure-seeking multilinear methods for the analysis of fMRI data. Neurolm-
age, 22:728-739, 2004.

[62] 1. Davidson, S. Gilpin, O. Carmichael, and P. Walker. Network discovery via constrained tensor analysis of fMRI
data. In KDD ’13: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 194-202, 2013.

[63] L. He, X. Kong, P. S. Yu, A. B. Ragin, Z. Hao, and X. Yang. Dusk: A dual structure-preserving kernel for
supervised tensor learning with applications to neuroimages. In SDM’14: Proceedings of the SIAM International
Conference on Data Mining, pages 127-135, 2014.

[64] S. Ferdowsi, V. Abolghasemi, and S. Sanei. A new informed tensor factorization approach to EEG—fMRI fusion.
Journal of Neuroscience Methods, 254:27 — 35, 2015.

[65] C. Chatzichristos, E. Kofidis, Y. Kopsinis, M. M. Moreno, and S. Theodoridis. Higher-order block term decompo-
sition for spatially folded fMRI data. In LVA/ICA 2017: International Conference on Latent Variable Analysis and
Signal Separation, 2017.

[66] K. H. Madsen, N. W. Churchill, and M. Mgrup. Quantifying functional connectivity in multi-subject fMRI data
using component models. Human Brain Mapping, 38:882—-899, 2017.

[67] A.H. Williams, T. H. Kim, F. Wang, S. Vyas, S. I. Ryu, K. V. Shenoy, M. Schnitzer, T. G. Kolda, and S. Ganguli.
Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor
component analysis. Neuron, 98(6):1099-1115, 2018.

17


http://dx.doi.org/10.1101/543603

	Introduction
	Materials and Methods
	Background
	CANDECOMP/PARAFAC (CP)
	Structure-Revealing Coupled Matrix and Tensor Factorizations
	Joint ICA

	Experiments
	Data
	Experimental Setting

	Performance Evaluation

	Results
	Individual analysis of the EEG tensor using a CP model
	Joint analysis of EEG and fMRI
	Sensitivity Analyses

	Joint analysis of EEG, fMRI and sMRI

	Discussion

